Deriving the formula was done using area by integration. Say we have an ellipse and consider one-quarter of it. Let's solve the area of this section using integration.
We compute the area of a single segment using integration.
\(A_1=\int_{x_1}^{x_2} y d x\)
\(A_1=\int_0^a \frac{b}{a} \sqrt{a^2-x^2} d x\)
First, we apply trigonometric substitution to solve this integral, let:
\(x=a \sin \theta\)
\(d x=a \cos \theta d \theta\)
We also need to change the upper and lower limits of the definite integral. We find the limits \(\theta_1\) and \(\theta_2\) by substituting \(x_1\) and \(x_2\) to \(x = a\sin\theta\):
\(0=a \sin \theta_1\)
\(\theta_1=0\)
\(a=a \sin \theta_2\)
\(\theta_2=\frac{\pi}{2}\)
Next, we proceed to find the integral of the expression:
\(A_1=\frac{b}{a} \int_0^{\frac{\pi}{2}} \sqrt{a^2-a^2 \sin ^2 \theta}(a \cos \theta d \theta)\)
\(A_1=a b \int_0^{\frac{\pi}{2}} \sqrt{1-\sin ^2 \theta}(\cos \theta d \theta)\)
Apply Pythagorean identity:
\(A_1=a b \int_0^{\frac{\pi}{2}} \cos ^2 \theta d \theta\)
Apply double angle identity:
\(A_1=a b \int_0^{\frac{\pi}{2}} \frac{1+\cos 2 \theta}{2} d \theta\)
Split into two terms:
\(A_1=\frac{a b}{2}\left(\int_0^{\frac{\pi}{2}} d \theta+\int_0^{\frac{\pi}{2}} \cos 2 \theta d \theta\right)\)